Anwendungen von Deep Learning für Computer Vision

01.10.2021

Deep Learning + Computer Vision

Bildverarbeitungstechnologien, die auf Deep Learning (DL) basieren, bieten branchenübergreifend einen echten Mehrwert. Solche intelligenten Technologien gibt es schon seit einigen Jahren, aber jetzt werden sie endlich erwachsen und gewinnen an Bedeutung.

In der Tat ist es gerade die Computer Vision, die selbstfahrende Autos überhaupt erst möglich macht. Es gibt jedoch eine Vielzahl von weiteren Möglichkeiten und Anwendungsfällen der Computer Vision, darunter auch die Verbesserung des menschlichen Sehvermögens.

Mehr lesen

Künstliche Intelligenz zur effizienten Unterstützung bei Übersetzungsarbeiten

23.09.2021

KI + Übersetzungen

Künstliche Intelligenz (KI) wird ein immer wichtigerer Teil unseres Lebens. Ob in unserem Zuhause mit intelligenten Lautsprechern und Automatisierung oder in der Geschäftswelt, ihr Einfluss auf unser Leben ist nicht von der Hand zu weisen.

Doch während die Vorteile der KI auf der Hand liegen, war der Einsatz der Technologie bei der Sprachübersetzung in der Vergangenheit schwierig, wenn nicht gar unmöglich. Sprachübersetzung ist ein Bereich, der schon immer menschliches Eingreifen erfordert hat. Es gibt einfach zu viele Nuancen in der Sprache, als dass eine Maschine sie ohne ein umfangreiches Training, das meist in mühsamer Handarbeit erfolgt, verstehen könnte.

In den letzten Jahren hat sich diese Situation geändert. Mit neueren Fortschritten im Bereich des maschinellen Lernens (ML) und der Entwicklung neuronaler Netze ist diese einst schwierige Aufgabe nun viel leichter zu bewältigen.

Mehr lesen

Objekterkennung und -Segmentierung

14.09.2021

Objekterkennung

In den letzten Jahren hat sich die Entwicklung im Bereich der Objekterkennung und -segmentierung erheblich beschleunigt. Heute können intelligente Algorithmen unzählige einzelne Objekte in einem Video oder einem Bild finden und klassifizieren. Obwohl dies für Maschinen anfänglich unglaublich schwierig war, gehört es heute zum Alltag.

Sowohl die Objekterkennung als auch die -segmentierung werden durch künstliche Intelligenz (KI), maschinelles Lernen (ML) und Deep Learning (DL) unterstützt. In diesem Szenario können Convolutional Neural Networks (zu dt. „faltendes neuronales Netzwerk“) die Klasse, zu der jedes Objekt in einem Bild gehört, lokalisieren und identifizieren.

Es hat sich auch zu weit mehr als einem intelligenten Algorithmus entwickelt, der Objekte, auf in einer Datenbank gespeicherten Fotos, erkennen kann. Der Algorithmus kann heute auch Objekte in Echtzeit finden und klassifizieren, um Technologien wie selbstfahrende autonome Fahrzeuge und mehr zu ermöglichen.

Mehr lesen

Wie Künstliche Intelligenz Systeme trainiert werden

02.09.2021

Künstliche Intelligenz Systeme trainieren

Wenn die meisten Menschen über künstliche Intelligenz (KI) nachdenken, stellen sie sich zwei mögliche Zukunftsvisionen vor. Eine positive Zukunft, in der selbstfahrende Autos uns bei der Navigation auf unseren Straßen helfen und Roboter uns bei der Instandhaltung unserer Häuser unterstützen. Oder eine eher negative, in der Maschinen uns die Arbeitsplätze wegnehmen.

Glücklicherweise sieht es so aus, als müssten wir uns um die negative Vision keine Sorgen machen. KI-Systeme werden den Menschen in der Arbeitswelt nicht ersetzen, sondern vielmehr als unschätzbare Helfer an seiner Seite existieren. Während selbstfahrende Autos auf dem besten Weg sind, Realität zu werden, warten einige unserer anderen grandiosen Ziele für die KI noch auf ihre Verwirklichung, doch bis es soweit ist, muss noch einiges getan werden.

Mehr lesen

Wie die Gesichtserkennung funktioniert

21.07.2021

Wie die Gesichtserkennung funktioniert

Die Gesichtserkennungstechnologie hat in den letzten Jahren einen langen Weg zurückgelegt. Von der Entsperrung Ihres iPhones durch Scannen Ihres Gesichts bis hin zur automatischen Markierung von Fotos sind die meisten von uns schon damit in Berührung gekommen und haben auf die eine oder andere Weise davon profitiert.

Aber es gibt noch viel mehr, was wir mit der Technologie machen können, als nur Gesichter zu erkennen. Zum Beispiel kann es als Werkzeug im Marketing eingesetzt werden, um den Verkauf und die Kundenerfahrung zu verbessern. Oder Sie können diese Technologie in Büros nutzen, um die Anwesenheit von Mitarbeitern zu markieren oder automatisch Zugang zu sicheren Bereichen zu gewähren.

Aber bevor wir an dieser Stelle bereits zu weit vorausgreifen, lassen Sie uns den Begriff „Gesichtserkennung“ definieren.

Mehr lesen